## Vocational English IV (Mesleki Yabancı Dil IV) Week 6

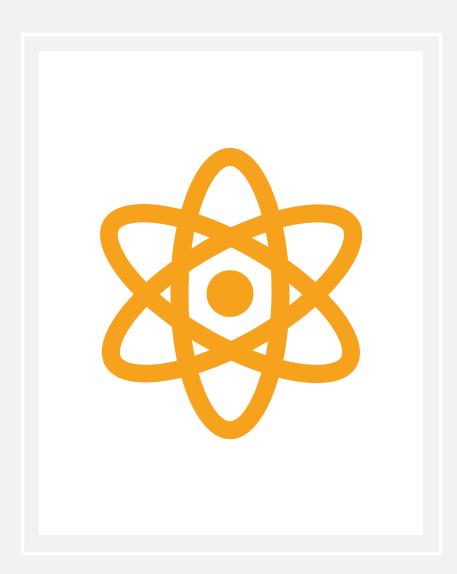


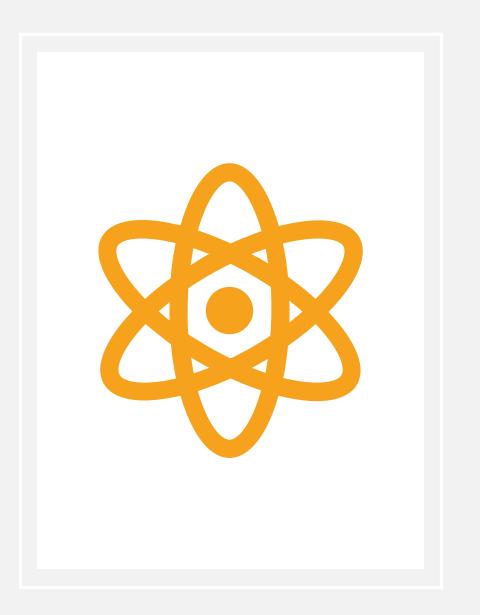


Engineering Faculty Computeer Engineering

Prepared by: Dr Ercan Ezin

## INTRODUCTION


## UNDERSTANDING QUANTUM COMPUTING


What is quantum computing?

https://www.ibm.com/think/topics/quantum-computing

# WHAT IS QUANTUM COMPUTING?

 Quantum computing is an emergent field of cutting-edge computer science harnessing the unique qualities of quantum mechanics to solve problems beyond the ability of even the most powerful classical computers.





#### HOW FAST IS QUANTUM COMPUTING?

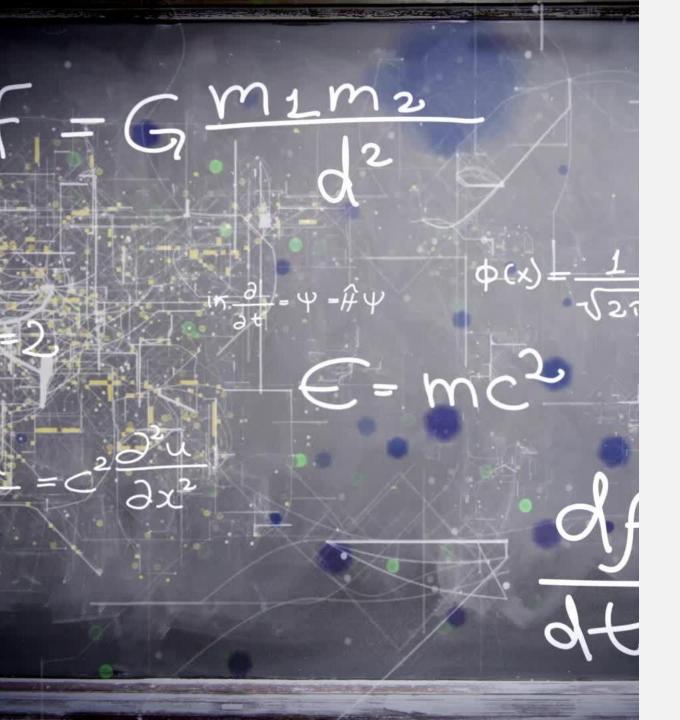
By taking advantage of quantum physics, fully realized quantum computers would be able to process massively complicated problems at **orders of magnitude** faster than modern machines. For a quantum computer, challenges that might take a classical computer thousands of years to complete might be reduced to a matter of minutes.

#### QUANTUM MECHANICS PRINCIPLES

**Superposition**: a state where a quantum system can represent multiple possibilities.

**Entanglement**: quantum particles become strongly correlated.

**Decoherence**: decay or collapse into measurable states.


**Interference**: entangled quantum states interact to affect outcome probabilities.

#### QUBITS VS. CLASSICAL BITS

• While classical computers rely on binary bits (zeros and ones), quantum computers use quantum bits, or **qubits**, in superposition.

A qubit can behave like a bit and store either a zero or a one, but it can also be a weighted combination of zero and one at the same time.

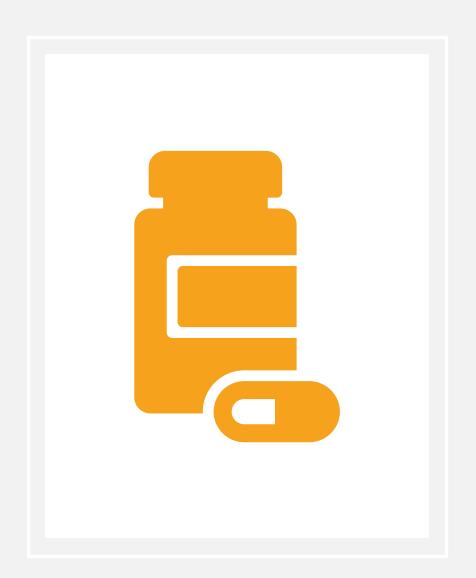




#### HOW QUANTUM COMPUTERS WORK

 A quantum circuit, prepared by the user, uses operations to generate entanglement, leading to interference between these different states, as governed by an algorithm.

#### QUANTUM HARDWARE


Qubits are created by manipulating quantum particles, such as photons, electrons, trapped ions and atoms. Common types: superconducting qubits, trapped ion qubits, quantum dots, photons, and neutral atoms.

- Classical computers store information in bits (0 or 1) and process data sequentially.
- Quantum computers store information in qubits as 0, 1 or a superposition of both and process data with quantum logic at parallel instances, relying on interference.

CLASSICAL VS. QUANTUM COMPUTING

#### QUANTUM USE CASES

 From the development of new drugs and performing machine learning in a new way to supply-chain optimization and climate change challenges, quantum computing might hold the key to breakthroughs in a number of critical industries.



#### QUANTUM UTILITY AND ADVANTAGE

- **Quantum utility**: provides accurate solutions beyond brute-force classical simulators.
- Quantum advantage: outperforms all classical methods for a specific problem.
  IBM uses benchmarks like quantum volume,
  layer fidelity, and CLOPS to measure progress.





### LISTENING

 https://www.ibm.com/think/po dcasts/mixture-ofexperts/quantum-leap-modelcontext-protocol-coreweaveipo-ai-voice-companion

Episode 45: Quantum leap, Model Context Protocol, CoreWeave IPO, and AI voice companion **[first 10 minutes only]** 

## **PRESENTATION TIME!**

#### Overall 20%

5% Introduction of self and the topic10% Presentation content(English is favoured)5% Presentation skills and using English

You have 5 Minutes, make it count!



## WORDS OF THE WEEK

- I. Qubit A unit of quantum information representing 0, 1, or both simultaneously via superposition.
- 2. Superposition A quantum state where a system exists in multiple configurations at once.
- **3.** Entanglement A phenomenon where qubits become linked so the state of one affects the other instantly, regardless of distance.
- 4. Decoherence The process where quantum states lose coherence and become classical (measurable) states.
- 5. Interference The interaction of quantum states where amplitudes cancel or reinforce each other, affecting outcomes.
- 6. Quantum Algorithm A set of steps designed to run on a quantum computer, using superposition and entanglement.
- 7. Quantum Gate The basic operation in a quantum circuit, modifying qubit states similarly to classical logic gates.
- 8. Quantum Circuit A series of quantum gates applied to qubits to perform computations.
- **9.** Quantum Volume A performance benchmark measuring the complexity of a quantum computer's output on random circuits.
- **10. Layer Fidelity** A metric evaluating the quality and error resistance of a quantum device's full circuit operations.

- II. CLOPS (Circuit Layer Operations per Second) A measure of how fast a quantum processor can execute layers of circuits.
- **12. Quantum Advantage** The point at which quantum computers outperform classical ones for certain tasks.
- **13. Quantum Utility** Achieving useful, accurate results from a quantum computer beyond what classical brute-force methods can deliver.
- 14. Superconducting Qubits Qubits created from superconductors operating at near-zero temperatures for stability and speed.
- **15. Trapped Ion Qubits** Qubits created by trapping and controlling ions using electromagnetic fields.
- 16. Quantum Dot A tiny semiconductor that holds and manipulates a single electron as a qubit.
- **17. Photon** A light particle used in quantum computing and secure quantum communication.
- 18. Josephson Junction A component made from two superconductors separated by an insulator, crucial for quantum circuits.
- **19. Quantum Error Correction** Techniques used to protect quantum information from decoherence and operational faults.
- **20. Qiskit** An open-source quantum SDK by IBM for writing, optimizing, and executing quantum algorithms.



EOF\*

\*End of Fun/File