
Vocational English II

(Mesleki Yabancı Dil II)

Week 4

Prepared by: Dr Ercan Ezin
Engineering Faculty

Computeer Engineering

INTRODUCTION

THIS WEEK WE WILL WORK ON

Software Engineering Principles

BLOG POST

https://fullscale.io/blog/software-engineering-principles/

TITLE: Top 10 Software Engineering Principles

IN TROD UCTION TO
S OF TWARE

EN GIN EER ING
P RIN CIP LE S

Software engineering is complex and
multifaceted.

Principles help navigate challenges and
ensure project success.

Key benefits: quality assurance,
efficiency, collaboration,
maintainability, risk mitigation.

Applying principles ensures long-term
software success.

WHY S OFTWARE
ENGINEERING

PRINCIPLES MATTER

Quality Assurance: Reduces defects,
improves reliability.

Efficiency & Productivity: Streamlines
development, reduces waste.

Collaboration: Ensures clear guidelines
for teamwork.

Maintainability & Scalability: Enables
long-term modifications.

Risk Mitigation: Identifies and resolves
issues early.

PRINCIPLE #1 –
KISS (KEEP IT

SIMPLE, STUPID)

Simplicity is key to
maintainability and readability.

Avoid unnecessary complexity.

Clean, concise, and readable
code improves efficiency.

PRINCIPLE #2 &
#3 – DRY & YAGNI

2- DRY (Don’t Repeat

Yourself): Avoid redundancy,

promote modular design.

• Code reuse enhances efficiency and reduces

errors.

3-YAGNI (You Aren’t Gonna

Need It): Only implement

required features.

• Prevent over-engineering and unnecessary

functionality.

PRINCIPLES #4 & #5 – SEPARATION OF
CONCERNS & MODULARITY

4-Separation of Concerns:
Break software into

independent modules.

• Each module should have a
clear responsibility.

5-Modularity: Software
should be a collection of
reusable, self-contained

modules.

• Enables easy modification,
testing, and scalability.

PRINCIPLES #6 & #7 – SRP & OCP

6-Single Responsibility
Principle (SRP): Each module,

class, or function should have
only one responsibility.

• Prevents mixing multiple
concerns in a single unit.

7-Open-Closed Principle
(OCP): Software should be
open for extension but
closed for modification.

• Encourages using
abstractions and interfaces
for flexibility.

PRINCIPLES #8,
#9 & #10 – LSP,

ISP & DIP

8-Liskov Substitution Principle (LSP):

Subtypes must be substitutable for base types
without affecting functionality.

9-Interface Segregation

Principle (ISP): Clients
should not depend on

unused interfaces.

Use smaller, more
specific interfaces.

10-Dependency Inversion

Principle (DIP): High-level
modules should depend on

abstractions, not concrete

implementations.

Encourages
dependency

injection to

improve flexibility.

BENEFITS OF
APPLYING THESE

PRINCIPLES

Higher Software Quality: Fewer defects, better
performance.

Increased Productivity: Faster development
cycles.

Better Collaboration: Shared understanding
improves teamwork.

Reduced Technical Debt: Easier to maintain and
scale.

Greater Agility: Adaptability to changing
requirements.

Cost Savings: Minimized rework and optimized
resources.

LISTENING ACTIVITY

https://www.youtube.com/watch?v=V3TUEeB0kW0

https://www.youtube.com/watch?v=V3TUEeB0kW0

BOOK RECOMMENDATIONS

WORDS OF THE WEEK

PS: Keep a journal where you note these words with their meanings and usages in a sentence.

1. Abstraction – Hides implementation

details.

2. Encapsulation – Bundles data and

methods.

3. Cohesion – Degree of module focus.

4. Coupling – Dependency between modules.

5. Scalability – Handles growth efficiently.

6. Maintainability – Easy to modify software.

7. Reusability – Use components multiple

times.

8. Modularity – Divide system into modules.

9. Robustness – Handles errors gracefully.

10. Extensibility – Allows feature expansion.

11. DRY (Don't Repeat Yourself) – Eliminates redundancy.

12. KISS (Keep It Simple, Stupid) – Avoids unnecessary

complexity.

13. YAGNI (You Aren't Gonna Need It) – Prevents over-

engineering.

14. Single Responsibility Principle (SRP) – One job per module.

15. Open-Closed Principle (OCP) – Extend without modifying.

16. Liskov Substitution Principle (LSP) – Maintain type

compatibility.

17. Interface Segregation Principle (ISP) – Small, specific

interfaces.

18. Dependency Inversion Principle (DIP) – Depend on

abstractions.

19. Agile Development – Iterative, flexible development.

20. Technical Debt – Future code maintenance burden.

EOF*

*End of Fun/File

	COVER
	Slide 1: Vocational English II (Mesleki Yabancı Dil II) Week 4

	INTRODUCTION
	Slide 4: INTRODUCTION
	Slide 5: THIS WEEK WE WILL WORK ON
	Slide 6: BLOG POST
	Slide 7: Introduction to Software Engineering Principles
	Slide 8: Why Software Engineering Principles Matter
	Slide 9: Principle #1 – KISS (Keep It Simple, Stupid)
	Slide 10: Principle #2 & #3 – DRY & YAGNI
	Slide 11: Principles #4 & #5 – Separation of Concerns & Modularity
	Slide 12: Principles #6 & #7 – SRP & OCP
	Slide 13: Principles #8, #9 & #10 – LSP, ISP & DIP
	Slide 14: Benefits of Applying These Principles
	Slide 15: LISTENING ACTIVITY
	Slide 17: BOOK RECOMMENDATIONS
	Slide 18: WORDS OF THE WEEK
	Slide 19: EOF*

